使用 Hill 参数表示横观各向同性的材料矩阵

参考文献:Micromechanics of Composite Materials,George J. Dvorak,section 2.3

Hill(1964)给出一种横观各向同性材料更紧凑的表达方式: \[ \left[\begin{array}{l} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{array}\right]=\left[\begin{array}{cccccc} n & l & l & 0 & 0 & 0 \\ l & k+m & k-m & 0 & 0 & 0 \\ l & k-m & k+m & 0 & 0 & 0 \\ 0 & 0 & 0 & m & 0 & 0 \\ 0 & 0 & 0 & 0 & p & 0 \\ 0 & 0 & 0 & 0 & 0 & p \end{array}\right]\left[\begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2 \varepsilon_{23} \\ 2 \varepsilon_{31} \\ 2 \varepsilon_{12} \end{array}\right] \] 式中 1 方向为纤维主方向,参数 \(k,l,n,m,p\) 与横观各向同性的工程常数之间的对应关系为 \[ \left. \begin{aligned} k=\left[ 2\frac{1-v_{23}}{E_{22}} - 4 \frac{v_{12}^2}{E_{11}} \right]^{-1} \quad l=2 k v_{12} \\ n=E_{11}+4 k v_{12}^2 = E_{11} + \frac{l^2}{k} \quad m=G_{23} \quad p=G_{21} \end{aligned} \right\} \]

\[ \left. \begin{aligned} E_{11} = n - l^2/k \quad v_{12} = l/2 k \quad v_{21} = E_{22} v_{12} / E_{11} \\ E_{22} = E_{33} = \frac{4 m\left(k n-l^2\right)}{n(k+m)-l^2} \quad v_{23} = v_{32}=\frac{n(k-m)-l^2}{n(k+m)-l^2} \end{aligned} \right\} \]

为验证上述公式,我们不妨代入各向同性的材料参数,那么该公式最终应退化为各向同性的材料矩阵: \[ k = \frac{E}{2(1+\nu)(1-2\nu)} = \lambda + \mu, \quad l = \frac{\nu E}{(1+\nu)(1-2\nu)} = \lambda, \quad n = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} + \frac{\lambda^2}{\lambda+\mu} = \lambda + 2\mu \] 以及 \[ m = p = \mu \] 值得指出的是,使用 Hill 参数表示横观各向同性材料刚度矩阵,关系式 \[ \frac{C_{33} - C_{32}}{2} = C_{44} \] 更方便直接看出。这也是横观各向同性材料与一般的正交各向异性材料之间的差别