单胞问题张量 E P 的解析关系

参考文献:Fish,Practical multiscaling, chapter 4.3.5

示性函数在单胞分块上的积分运算

Reduced order 假设分块上的物理量是常值,为描述分块常值函数,我们定义 Partition \(Y^\alpha\) 上的示性函数 \(\chi^{(\alpha)}(y):Y\mapsto\mathbb{R}\)\[ \chi^{(\alpha)}(y) \triangleq \begin{cases} 1, \quad y \in Y^{(\alpha)}\\ 0, \quad y \notin Y^{(\alpha)}\\ \end{cases} \] 示性函数在单胞 \(Y\) 上的积分等于分块 \(Y^{(\alpha)}\) 的度量: \[ |Y^{(\alpha)}| \triangleq \int_{Y} \chi^{(\alpha)}(y) \mathrm{d} y \equiv \int_{Y^{(\alpha)}} \mathrm{d} y \] 我们有如下结论: \[ \int_{Y} \chi^{(\alpha)}(y) \chi^{(\beta)}(y) ~\mathrm{d}y = \begin{cases} |Y^{(\alpha)}|, \quad \alpha = \beta \\ 0, \quad \quad \quad \alpha \neq \beta \end{cases} \] 因此,对于两个分块常值的函数 \(f(y)=\chi^{(\alpha)}(y)f^{(\alpha)}\)\(g(y)=\chi^{(\alpha)}(y)g^{(\alpha)}\),它们的乘积在单胞上的积分为 \[ \begin{aligned} \int_{Y} f(y)g(y) ~\mathrm{d}y &= \int_{Y} \sum_{\alpha} \left( \chi^{(\alpha)}(y)f^{(\alpha)} \right) \sum_{\beta} \left( \chi^{(\beta)}(y)g^{(\beta)} \right) ~\mathrm{d}y \\ &= \sum_{\alpha} f^{(\alpha)}g^{(\alpha)} \int_{Y} \chi^{(\alpha)}(y) ~\mathrm{d}y = \sum_{\alpha} |Y^{(\alpha)}| f^{(\alpha)}g^{(\alpha)} \end{aligned} \]

张量 \(\mathbb{E}^{(\alpha)}\) \(\mathbb{L}^{(\alpha)}\) 的关系

单胞的弹性模量 \(L_{ijkl}(y)\) 可以表示为: \[ L_{ijkl}(y) = \sum_{\alpha} \chi^{(\alpha)}(y)L_{ijkl}^{(\alpha)} \tag{1} \] 式中,\(L_{ijkl}^{(\alpha)}\) 表示分块 \(Y^{(\alpha)}\) 上的材料弹性模量,我们假设它总是均匀的,也即 \(L_{ijkl}^{(\alpha)} \equiv \mathrm{const}\)

宏观尺度的弹性张量 \(L_{ijkl}^c\) 定义为: \[ L_{ijkl}^c \triangleq \frac{1}{|Y|}\int_{Y} L_{ijmn}(y) E_{mn}^{kl}(y) \mathrm{d} y \] 将式(1)代入得到 \[ L_{ijkl}^c = \frac{1}{|Y|} \sum_{\alpha} L_{ijmn}^{(\alpha)} \int_{Y} \chi^{(\alpha)}(y) E_{mn}^{kl}(y) ~\mathrm{d}y \tag{2} \] 定义分块上的应变影响张量 \(E_{mn}^{kl(\alpha)}\)\[ E_{mn}^{kl(\alpha)} \triangleq \frac{1}{|Y^{(\alpha)}|}\int_{Y} \chi^{(\alpha)}(y) E_{mn}^{kl}(y) ~\mathrm{d} y \] 以及分块 \(\alpha\) 所占的体积分数 \(c^{(\alpha)}\)\[ c^{(\alpha)} \triangleq \frac{|Y^{(\alpha)}|}{|Y|} \] 那么,式(2)就可以表示为 \[ L_{ijkl}^c = \sum_{\alpha} c^{(\alpha)}L_{ijmn}^{(\alpha)}E_{mn}^{kl(\alpha)} \tag{4.119a} \] 上式对任意的四阶张量 \(L_{ijmn}^{(\alpha)}\) 均成立,特别的,我们选取 \[ L_{ijmn}^{(\alpha)} = I_{ij}^{mn},\quad 对任意分块 \alpha \] 式中,$I_{ij}^{kl} $ 为四阶单位张量。那么,式(3)有 \[ \sum_{\alpha}c^{(\alpha)}E_{ij}^{kl(\alpha)} = I_{ij}^{kl} \tag{4.119b} \] ## 张量 \(\mathbb{E}^{(\alpha)}\) \(\mathbb{P}^{(\alpha \beta)}\)​ 的关系

Fish 的证明是从式(4.41)出发: \[ \varepsilon_{i j}^{(\beta)}(x) -\sum_{\alpha} P_{i j}^{k l(\beta \alpha)} \mu_{k l}^{(\alpha)}(x) =E_{i j}^{k l(\beta)} \varepsilon_{k l}^c(x) \tag{4.41} \] 并选取特别情景下的 \(\mu_{k l}^{(\alpha)}(x)\),使得==分块上的应变与应力均相等(?!)==: \[ \begin{aligned} & \sigma_{i j}^{(\alpha)}:=\sigma_{i j}^c; \alpha=1,2 \ldots N \\ & \varepsilon_{i j}^c=:\varepsilon_{i j}^{(\alpha)}=M_{i j k l}^{(\alpha)} \sigma_{k l}^c+\mu_{i j}^{(\alpha)} ; \alpha=1,2 \ldots N \\ & \mu_{i j}^{(\alpha)}=\mu_{i j}^c-\left[M_{i j k l}^{(\alpha)}-M_{i j k l}^c\right] \sigma_{k l}^c \end{aligned} \] 然后将上式代入到式(4.41)中,得到 \[ \left[E_{i j}^{k l(\beta)}+\sum_{\alpha} P_{i j}^{k l(\beta \alpha)}-I_{i j k l}\right] \varepsilon_{k l}^c =\sum_{\alpha} P_{i j}^{k l(\beta \alpha)} M_{k l m n}^{(\alpha)} \sigma_{m n}^c \] 再根据宏观应力应变的任意性,就得到 \[ \sum_{\beta} P_{kl}^{mn(\alpha\beta)} + E_{kl}^{mn(\alpha)} - I_{kl}^{mn} = 0, \quad \alpha=1,2,\ldots,N \tag{4.119c} \]\[ \sum_{\beta} P_{ij}^{mn(\alpha\beta)} M_{mnkl}^{(\beta)} = 0, \quad \alpha=1,2,\ldots,N \tag{4.119d} \]


这里给出另一种推导 P E 张量之间关系的方法,不需要对本征应变做出奇怪的假设。张量场 \(E_{ij}^{kl}\)\(P_{ij}^{kl}\) 分别满足如下微分方程:

\[ \begin{aligned} \left\{ L_{ijkl}(y) E_{kl}^{mn} \right\}_{,y_j} &= 0, \text{in}~ Y \\ \left\{ L_{ijkl}(y) \left[ P_{kl}^{mn(\alpha)}(y) - I_{kl}^{mn}\chi^{(\alpha)}(y) \right] \right\}_{,y_j} &= 0, \text{in}~ Y \quad \alpha=1,2, \ldots,N \end{aligned} \] 我们将上述方程写成弱形式, 对任意满足周期性边界条件的函数 \(v_i\), 有 \[ \int_{Y} L_{ijkl}(y) E_{kl}^{mn}(y) v_{i,j}(y) ~\mathrm{d}y = 0 \tag{3} \] 以及 \[ \int_{Y} L_{ijkl}(y) \left[ P_{kl}^{mn(\alpha)}(y) - I_{kl}^{mn}\chi^{(\alpha)}(y) \right] v_{i,j}(y) ~\mathrm{d}y = 0, \text{in}~ Y \quad \alpha=1,2, \ldots,N \tag{4} \] 对式(4)Partition 求和, 得到 \[ \int_{Y} L_{ijkl}(y) \left[ \sum_{\alpha}\left( P_{kl}^{mn(\alpha)}(y) \right) - I_{kl}^{mn} \right] v_{i,j}(y) ~\mathrm{d}y = 0 \tag{5} \] 式(3)与式(5)相加得到 \[ \int_{Y} L_{ijkl}(y) \left[ \sum_{\alpha}\left( P_{kl}^{mn(\alpha)}(y) \right) + E_{kl}^{mn}(y) - I_{kl}^{mn} \right] v_{i,j}(y) ~\mathrm{d}y = 0 \tag{6} \] 如果选取 test function \(v_i\)​​ 使得每一个 Partition 上的应变都是均匀的, 也即 \[ v_{i,j}(y) = \sum_{\alpha}\chi^{(\alpha)}(y)v_{i,j}^{(\alpha)} \] 那么应力分布也是分块均匀的: \[ \sigma_{kl}(y) = L_{ijkl}(y) v_{i,j}(y) = \sum_{\alpha}\chi^{(\alpha)}(y) L_{ijkl}^{(\alpha)} v_{i,j}^{(\alpha)} = \sum_{\alpha}\chi^{(\alpha)}(y) \sigma_{kl}^{(\alpha)} \] 再代入式(1),那么式(6)就可以写为 \[ \sum_{\beta}\sigma_{kl}^{(\beta)}\int_{Y} \chi^{(\beta)}(y) \left[ \sum_{\alpha}\left( P_{kl}^{mn(\alpha)}(y) \right) + E_{kl}^{mn}(y) - I_{kl}^{mn} \right] ~\mathrm{d}y = 0 \tag{7} \] 如果我们定义 \[ P_{kl}^{mn(\beta \alpha)} \triangleq \frac{1}{|Y^{(\beta)}|}\int_{Y} \chi^{(\beta)}(y) P_{kl}^{mn(\alpha)}(y) ~\mathrm{d}y \] 那么有 \[ \begin{aligned} \int_{Y} \chi^{(\beta)}(y) \sum_{\alpha}\left( P_{kl}^{mn(\alpha)}(y) \right) ~\mathrm{d}y &= |Y^{(\beta)}|\sum_{\alpha} P_{kl}^{mn(\beta\alpha)}, \\ \int_{Y} \chi^{(\beta)}(y) E_{kl}^{mn}(y) ~\mathrm{d}y &= |Y^{(\beta)}| E_{kl}^{mn(\beta)}, \\ \int_{Y} \chi^{(\beta)}(y) I_{kl}^{mn} ~\mathrm{d}y &= |Y^{(\beta)}|I_{kl}^{mn} \end{aligned} \] 将上式代入到式(7)当中,就会得到关于 \(\sigma_{kl}^{(\beta)}\) 的方程: \[ \sum_{\beta}\sigma_{kl}^{(\beta)} |Y^{(\beta)}| \left( \sum_{\alpha} P_{kl}^{mn(\beta\alpha)} + E_{kl}^{mn(\beta)} - I_{kl}^{mn} \right) = 0 \] 又因为 \(\sigma_{kl}^{(\beta)}\) 可以任意选取大小,所以上式关于 \(\sigma_{kl}^{(\beta)}\) 的系数都必须等于 0: \[ \sum_{\alpha} P_{kl}^{mn(\beta\alpha)} + E_{kl}^{mn(\beta)} - I_{kl}^{mn} = 0, \quad \beta=1,2,\ldots,N \tag{4.119c} \] 如果选取 test function \(v_{i,j}\) 为常应变,那么还可以得到如下结论: \[ \sum_{\alpha} c^{(\alpha)} \mathbb{L}^{(\alpha)}:(\mathbb{P}^{(\alpha\beta)} - \mathbb{I}) = 0, \quad \beta=1,2,\ldots,N \]

层级平均应变影响张量和 Transformation Influence Tensor (TIF)

设第 \(\alpha\) 块分块分裂为 \(\alpha_1\)\(\alpha_2\). 这时根据 TIF 和平均应变影响张量的定义,我们有 \[ \mathbb{E}^{(\alpha)} = \frac{c^{(\alpha_1)}}{c^{(\alpha)}} \mathbb{E}^{(\alpha_1)} + \frac{c^{(\alpha_2)}}{c^{(\alpha)}} \mathbb{E}^{(\alpha_2)} \] 定义 \[ c'^{(\alpha_1)} \triangleq \frac{c^{(\alpha_1)}}{c^{(\alpha)}}, \quad c'^{(\alpha_2)} \triangleq \frac{c^{(\alpha_2)}}{c^{(\alpha)}} \]\[ \mathbb{E}^{(\alpha)} = c'^{(\alpha_1)} \mathbb{E}^{(\alpha_1)} + c'^{(\alpha_2)} \mathbb{E}^{(\alpha_2)} \] 同样有 \[ \mathbb{P}^{(\alpha)}(y) = \mathbb{P}^{(\alpha_1)}(y) + \mathbb{P}^{(\alpha_2)}(y) \Rightarrow \\ \mathbb{P}^{(\beta\alpha)} = \mathbb{P}^{(\beta\alpha_1)} + \mathbb{P}^{(\beta\alpha_2)}, \alpha \neq \beta \\ \mathbb{P}^{(\alpha\alpha)} = c'^{(\alpha_1)} ( \mathbb{P}^{(\alpha_1\alpha_1)} + \mathbb{P}^{(\alpha_1\alpha_2)} ) + c'^{(\alpha_2)} ( \mathbb{P}^{(\alpha_2\alpha_1)} + \mathbb{P}^{(\alpha_2\alpha_2)} ) \]